

Clean Captive Installations in sub-Sahara Africa Webinar | Session 2

Summary of the Kenya country study and Tools

FS-UNEP Collaborating Centre

16th September, 2020 | Total duration - 70 minutes

Supported by: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Frankfurt School FS-UNEP Collaborating Centre for Climate & Sustainable Energy Finance

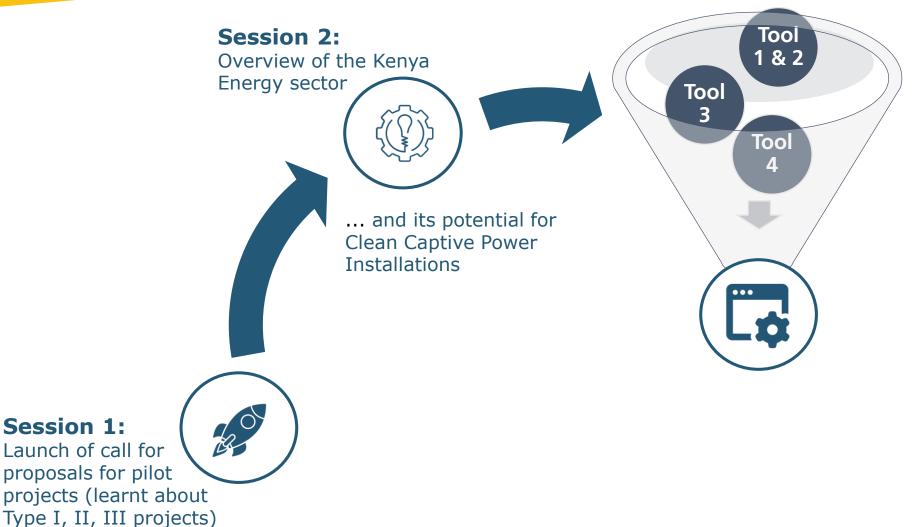
United Nations Environment Programme

Webinar | Agenda

Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by MARIA BAEZ (FS-UNEP Collabora	ting Centre)

Webinar | Agenda


Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by MARIA BAEZ (FS-UNEP Collabora	ting Centre)

Webinar | Introduction

Session 2

Session 2:

Set of tools as introductory guidelines to support in:

- Understanding various available financing options for clean captive solar PV projects, and
- Choosing the optimum solution depending on specific needs

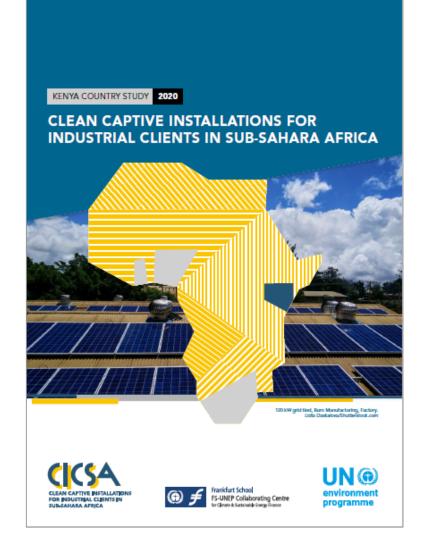
What's next?

- Download all documents via our website: <u>www.captiverenewables-</u> <u>africa.org</u>
- Submit your proposal applications (*deadline 9th October*)
- Communicate with us!

Webinar | Agenda

Session 2

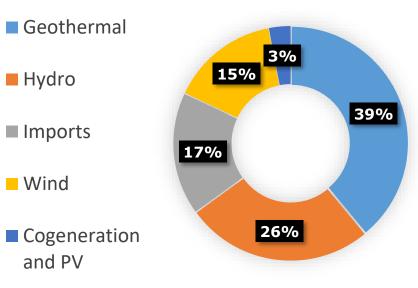
START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)


Session will be moderated by MARIA BAEZ (FS-UNEP Collaborating Centre)

Introduction

The Kenya Country report presents the state of the clean captive installations market in Kenya, with a focus on the commercial and industrial market and solar photovoltaic (PV) technology

Download from website: <u>captiverenewables-africa.org/publications/</u>



Energy profile

Kenya power sector has been undergoing reforms in recent years aimed at accelerating sectoral development

Energy indicator	Result
Access to electricity	75%
Electrification – urban areas	81%
Electrification – rural areas	58%
Average cost of generation	US\$ 0.11 per kWh
Electricity consumption	8 435 GWh
Electricity exports	24 GWh
Electricity imports	171 GWh
Electricity total installed capacity	2 716 MW

Energy market

- The total number of KPLC customers in the commercial and industrial (CI) tariff categories was 3,912 in June 2018
- Average consumption in megawatt-hours (MWh) per customer ranges from 493 MWh for CI1 customers to 10,849 MWh for CI4 customers.

TARIFF CATEGORY	CONNECTION VOLTAGE	VOLTAGE CATEGORY*	
CI1	415 V	Low	
CI2	11 kV	Medium	
CI3	33 kV	Medium	
CI4	66 kV	1 Each	
CI5	132 kV	High	

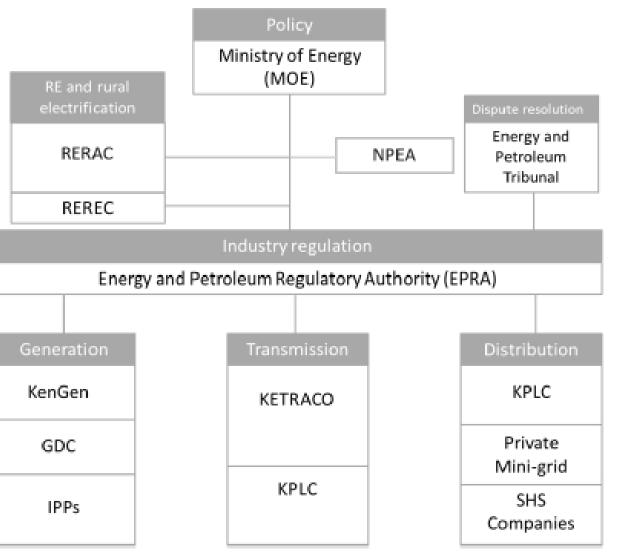
- Kenya experiences frequent grid down time due to weather conditions, equipment failure, vandalism and planned interruptions
- More than 80% of 1,011 surveyed manufacturing & service firms reported power outages on an average of 3.8 times per month. These outages lead to losses equivalent to 5.4% of annual sales

Electricity tariffs

Historic electricity prices for C&I tariff categories including surcharges

Regulatory and institutional framework

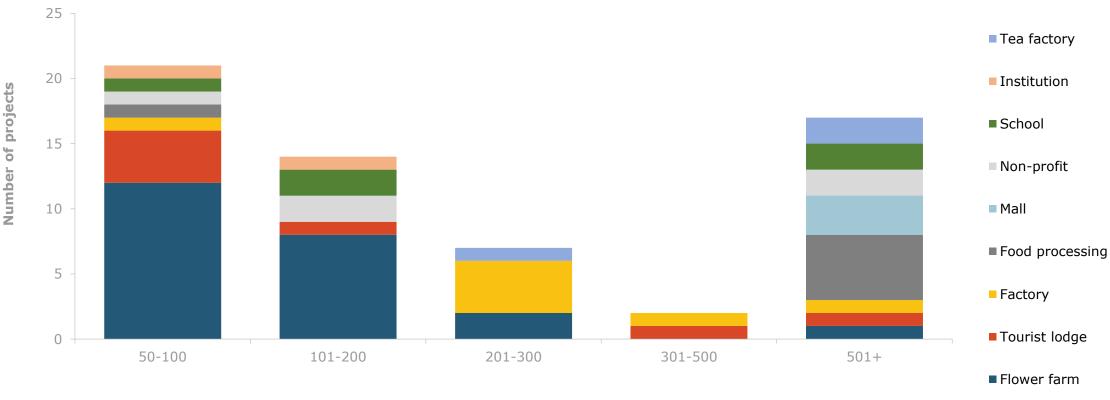
Policies:


National Energy Policy, 2018

Energy Act of 2019

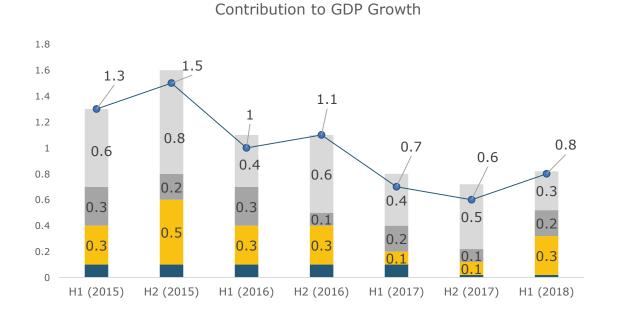
- Feed in Tariff, 2012
- Energy Auction Policy (draft)

Regulations:

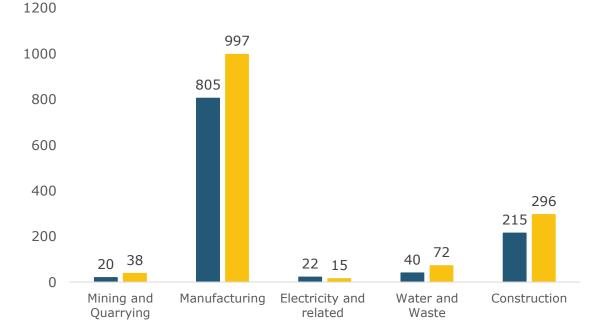

- Energy Regulations 2012
- Energy Management Regulations, 2012
- Energy Solar PV Regulations, 2012
- Kenya National Distribution Code

Overview of existing renewable energy captive installations

Number of captive PV systems above 50kWp by size and facility type



Size range (kWp)



Potential of the Industrial Sector

Overview of main industrial sub-sectors

Mining and Quarrying
 Eletricity and Water supply
 Industry
 Manufacturing
 Construction

Turnover > US\$ 1 million
Industries with 50 + employees

Potential of the Industrial Sector

Identified industrial sub-sector with high potential for clean captive

Economic Sub-sector	Turnover exceeds US\$ 1 million	Potential level
Mining and Quarrying	Only 20/ 297 businesses had a turnover of more than US\$1 million.	Low Potential (5-15 users)
Manufacturing	805 manufacturing entities had turnover exceed US\$ 1 million	High Potential
Electricity and related	Only 22/ 84 entities in the related sector had an assumed turnover of more than US\$1 million.	Low Potential
Water and waste	Only 31/ 205 entities had turnover exceeding US\$1 million	Low Potential (most of these entities are likely publicly owned)
Construction	Only 215/ 11,843 active entities had annual revenue of more than US\$ 1 million	Low potential (firms are expected to be either office-based or construction sites

Commercial bank financing

- In Kenya, only a few banks are involved in financing C&I RE captive power installations
- Lending to clean captive power projects is limited and perceived as high risk:
- Interest rate cap → thus reduced the bank's headroom for structuring finance deals with SMEs
 Risk-averse local banking sector with limited experience in financing corporate energy projects
 Foreign currency risk
- Three active banks are Diamond Trust Bank, Commercial Bank of Africa and Co-operative Bank of Kenya
- Development cooperation partner programmes supporting financing of clean captive power:
 SUNREF
 - Joint Crediting Mechanism
 - Powering Agriculture
 - o Green bonds

Private financiers

Main captive PV financing/ESCO firms active in Kenya

Ariya Capital - Provides leasing finance and fund management, and invests in IPPs. On the leasing side, has partnered with African Solar Designs

Crossboundary Energy - Finance and manage 1.5 MW of captive PV in Kenya to date. Has a partnership with leading EPC Solarcentury

Ecoligo - Crowd-funded debt sourced in Euros for individual projects under leasing/PPA. Financed 700-plus kW in Kenya. Often works with Kenyan EPC Harmonic Systems

Faber Capital - Part of an international group of companies, including Premier Solar Solutions (Kenyan EPC), and can offer financing.

Maris - Diversified holding company. Co-owns Equator Energy (Kenyan/German EPC), which enables EPC to offer financing.

responsibility - Global development fund manager with more than US\$3 billion of assets under management. Has a renewable energy project development arm in Kenya. Has financed a captive power developer in Ghana but not in Kenya (yet).

SolarAfrica/ NVI Energy - Captive PV financing platform and partner of Crossboundary

solarise africa

Solarise Africa - Private financier and ESCO. Has financed up to around 3 MW of solar PV in Kenya. Offers turnkey solutions under three types of longterm flexible funding solutions: asset financing, operating lease (with ownership option) and PPA. Partner of Premier Solar Solutions (Kenyan EPC).

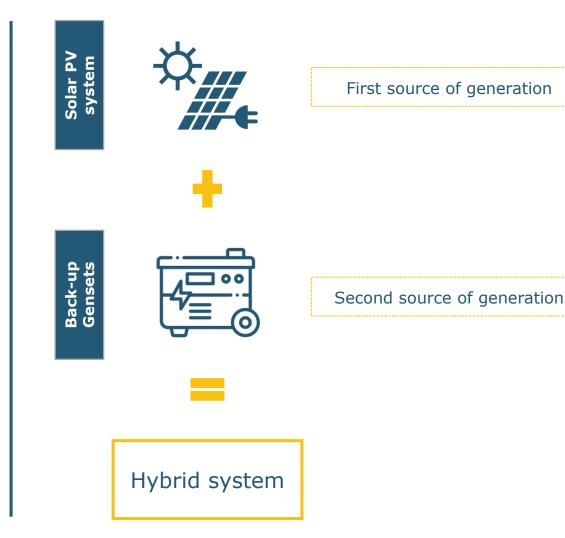
SunFunder - Provides exclusively debt. Established US\$1.2 million working capital debt facility for Questworks (Kenya developer/EPC) in June 2018.

Conclusion

- Kenya experiences frequent grid down time due to weather conditions, equipment failure, vandalism and planned interruptions. This results in annual sales losses for the C&I sector.
- Retail tariffs are likely to go up based on forecasts → PV plants with levelized costs will be attractive to a number of industrial users
- Captive plants <1MW installed capacity and 100% self-consumption do not require any electricity licensing or energy regulatory approval
- At least 100 captive power solar PV systems above 10-15 kWp at commercial, industrial and institutional/ non-profit establishments constructed or under construction
- There is an active ecosystem of financiers and developers for clean captive installations in Kenya

Webinar | Agenda

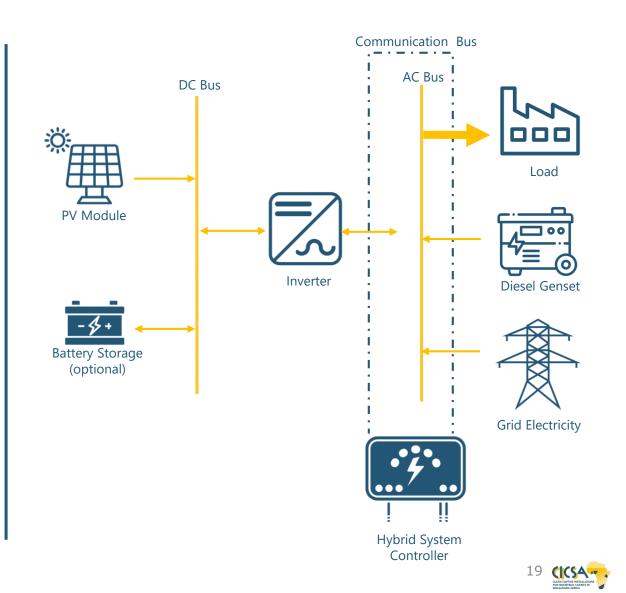
Session 2


START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)

Session will be moderated by MARIA BAEZ (FS-UNEP Collaborating Centre)

The Hybrid system

- Hybrid systems consists of more than one source for energy generation
- Most common is solar PV/diesel hybrid system
- Combines generation from solar PV and Gensets
- Can be either **on-grid** or **off-grid** systems

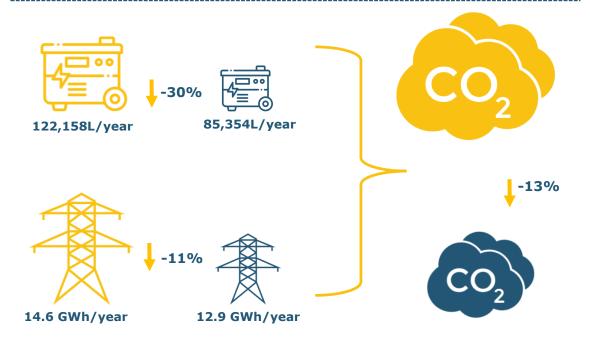


The Hybrid system

Hybrid system main components:

- Solar PV panels
- Inverters
- Gensets
- Hybrid system controller
- Battery storage (optional)

The Hybrid system


There are many **benefits to hybrid**

systems such as:

- Fuel savings
- Grid purchases savings
- Reliability of power supply
- Reduction in CO2 emissions
- Battery storage

Example:

- Factory based in Nairobi Kenya
- Operates on 24/7 basis
- Has five installed Gensets and utilizes three of them

The Hybrid system

NOTE: Ensure that product warranties are provided by the respective supplier

Solar PV panel

- Efficiency $\geq 18\%$
 - Degradation rate $\leq 0.7\%$
 - Temperature coefficient range: -0.3% to -0.5%
 - Power Tolerance: 0/+3%
 - Life cycle: 20 -25 years

Inverter

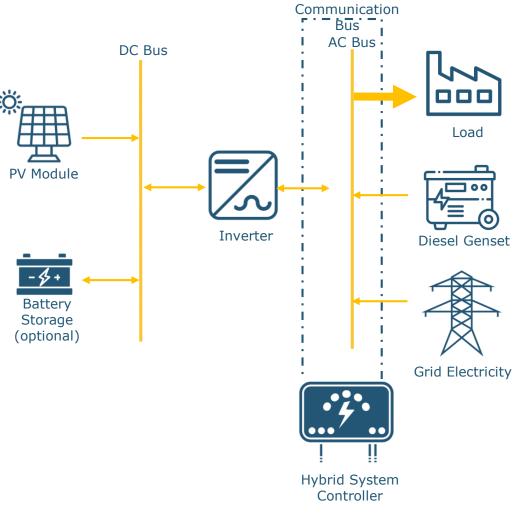
- Efficiency \geq 95%
- The DC to AC conversion losses: 2-5%
- Life cycle: 8 to 10 years

Battery Storage

- Efficiency $\geq 85\%$
- Depth of discharge (DOD) $\geq 80\%$
- Most used type: lead-acid
- Life cycle: 8 to 10 years

Hybrid system controller

- Energy management system
- Ensure compatibility with Gensets and


inverters

The Hybrid system

Ensuring a proper design

- Proper sizing of the system
- For on-grid systems, the system should be in accordance to the local grid requirements
- Performance ratio $\geq 80\%$
- Ensuring minimum load factor of Gensets is met
- Minimizing shading losses $\leq 1\%$ to 4%
- Roof installations should comply with the local legislation
- Maintenance and cleaning plan to reduce soiling losses

Webinar | Agenda

Session 2

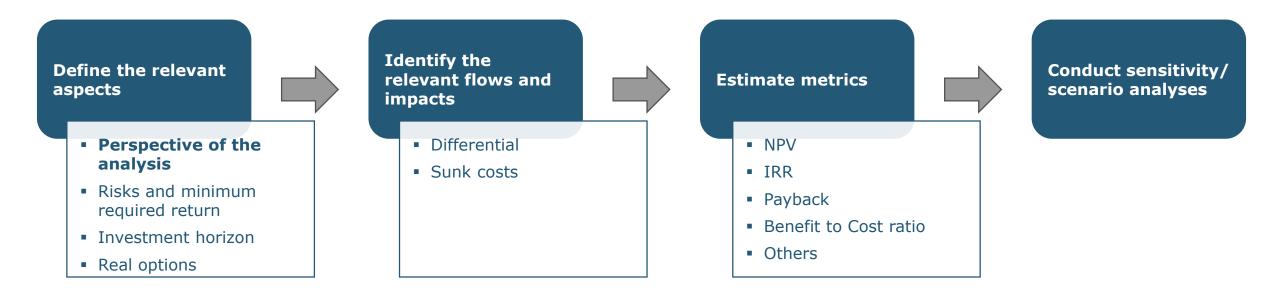
START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by MARIA BAEZ (FS-UNEP Collaborat	ting Centre)

Introduction

Content of the Tool

Introductory guidelines on metrics and considerations for analyzing the attractiveness of individual renewable energy projects such as solar PV captive systems

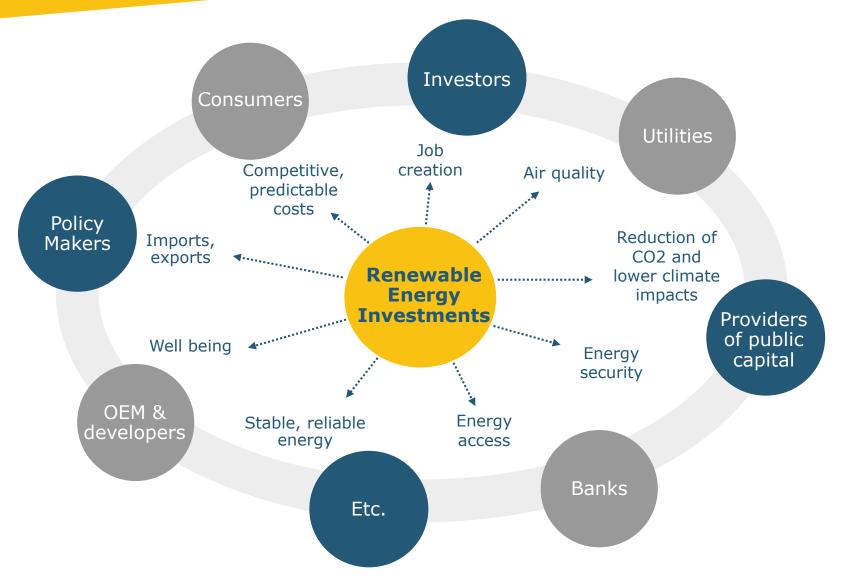
Perspective of the analysis: public or private


Target Audience

Stakeholders such as investors, policy makers and analysts by providing them with analytical considerations that are commonly required for a complete assessment of RE investments

TOOL 2 JULY 2020 METRICS FOR ASSESSING FINANCIAL VIABILITY OF RENEWABLE ENERGY PROJECTS / COST BENEFIT ANALYSIS OF RENEWABLE ENERGY PROGRAMMES
EXAMPLE OF THE SCHOOL OF THE S

Steps to evaluate projects



Analysis from various perspectives

	Public Sector	Private Sector
Beneficiaries	Society	Investor(s) (equity, debt, project)
Timeframe	Technological lifetime	Investment horizon
Costs and benefits	All economic, social and environmental impacts are considered, including external and indirect impacts	Only relevant costs and benefits that directly impact cash flows are considered
Discount rate used	Social discount rate (lower than private investors' required return)	Minimum required rate of return of the investor
Relevant Metrics	Benefit to Cost Ratio NPV LCOE	IRR NPV Payback period LCOE

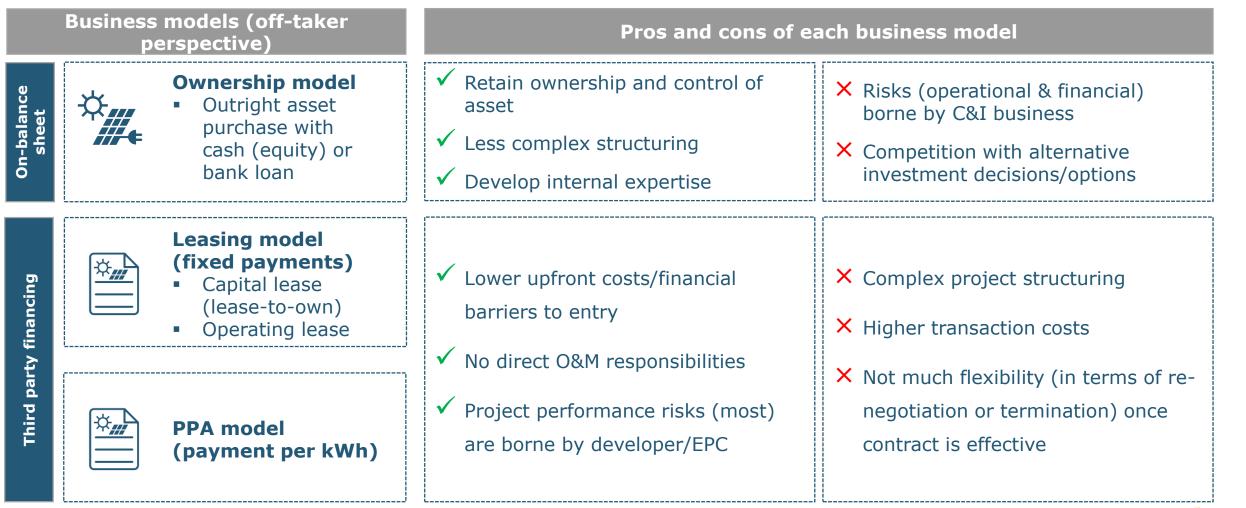
Public perspective

RE systems benefits

	Associated benefits of PV (non-exhaustive)
Ghana	 Increased energy self-sufficiency of consumers (reduced production costs and losses) CO₂ emissions reduction Contribution to the country CC objectives
Kenya	 Reduction of technical energy losses in the grid Demand curve flattening Reduction of infrastructure investments CO₂ emissions reduction Cost savings
Nigeria	 Increased energy self-sufficiency of consumers (reduced diesel costs and production losses) Positive health impacts and increased well-being More stable network infrastructure
South Africa	 CO₂ emissions reduction Less pressure on the current power infrastructure

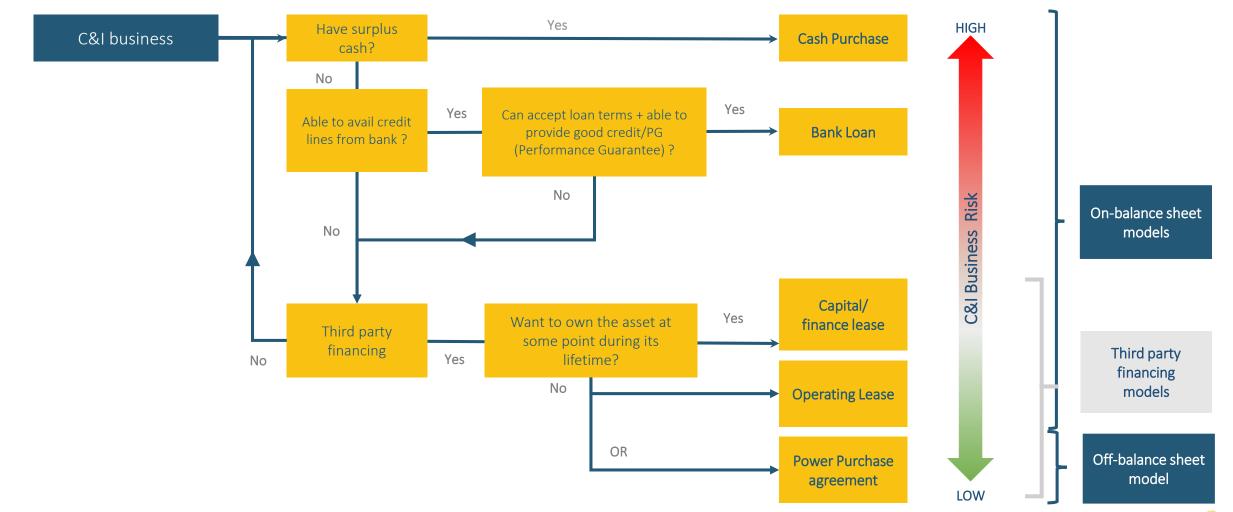
Webinar | Agenda

Session 2


START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	TOBIAS PANOFEN (FS-UNEP Collaborating Centre)
15 minutes	KENYA COUNTRY STUDY REPORT Overview of Kenya Energy sector and its potential for Clean Captive Power Installations	HIND II-IDRISSI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)

Session will be moderated by MARIA BAEZ (FS-UNEP Collaborating Centre)

Tool 1 | Financing guidelines & business models for solar PV captive systems


Understanding business models

Tool 1 | Financing guidelines & business models for solar PV captive systems

Choosing the right business model

Tool 3 | Preliminary financial model for viability assessment

Creating the input sheet

Objective of modelling: Conduct financial assessment of the PV project and illustrate the financial viability

Usage patterns

Financing costs

parameters

Other

System costs

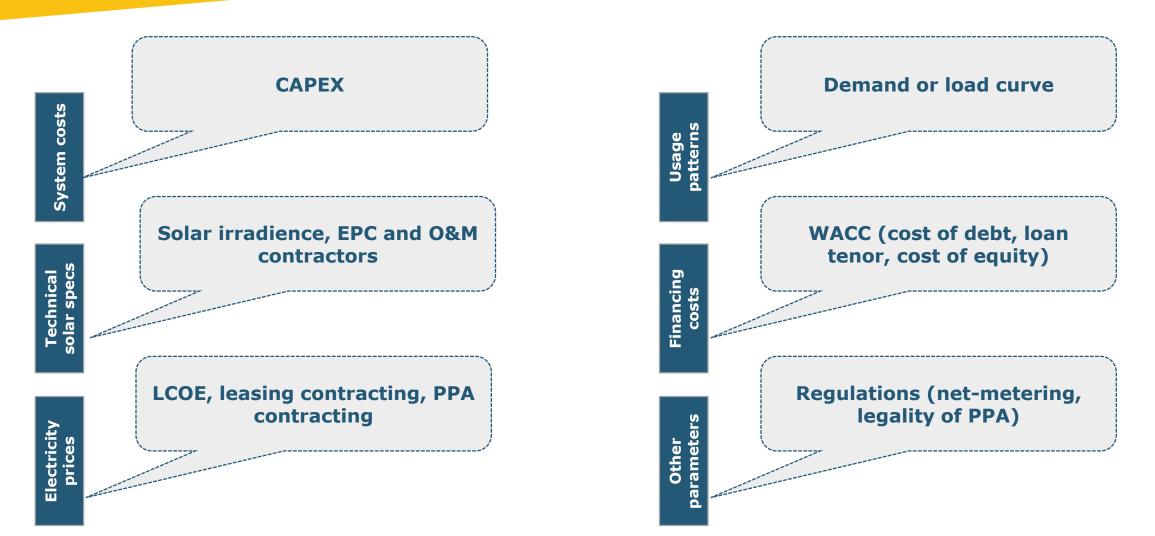
 Cost of the system including breakdown (panels, inverters, controllers, mounting structure, cabling, installation, etc.)

- % of solar consumption
- % of consumption used for net metering
- % of solar generation from Gensets
- % of solar generation lost

Technical solar specs

ectricity prices

- System size identification
- Generation utilization and total generation potential
- Grid tariff rates
- Back-up generation costs
- Net-metering benefits
- Future price increase


Total financing rate (WACC)

- Tenor of the loan
- Down payment amount

- Corporate tax
- O&M

Tool 3 | Preliminary financial model for viability assessment

Drivers of profitability

Tool 3 | Preliminary financial model for viability assessment

Model overview

Input Sheet

1. Assumption for grid electricity

Electricity prices

2. Assumption for solar system

- System assumption
- System usage

3. CAPEX and OPEX assumption

- System costs per KWp
- Replacement CAPEX
- Depreciation

4. Financing assumption

- Cost of equity and debt
- Loan tenor
- Corporate tax

5. Other assumptions

CO2 savings

6. Solar Production profile

Output Sheet

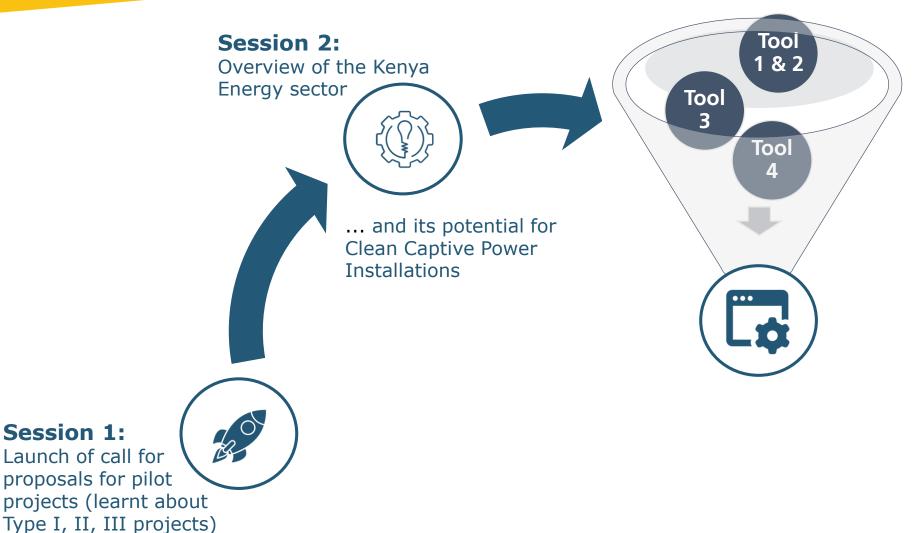
IRR (Project and Equity)

NPV of cash flows (Project and

Equity)

- LCOE
- DSCR
- Simple payback period
- CO₂ emission savings

The sensitivity sheet provides impact on an output by varying model inputs


Sensitivity sheet

- In doing so, the user will be able to simulate some uncertainties in the input values of the model, hence helping to make informed decisions
- This helps assess risks of a certain project

Webinar | Summary of key takeaways

Session 2

Session 2:

Set of tools as introductory guidelines to support in:

- Understanding various available financing options for clean captive solar PV projects, and
- Choosing the optimum solution depending on specific needs

What's next?

- Download all documents via our website: <u>www.captiverenewables-</u> <u>africa.org</u>
- Submit your proposal applications (*deadline 9th October*)
- Communicate with us!

Thank you for your patience!

www.captiverenewables-africa.org

info@captiverenewables-africa.org

Please contact us if any queries:

Image: Image:

Supported by: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Frankfurt School FS-UNEP Collaborating Centre for Climate & Sustainable Energy Finance

United Nations Environment Programme