

Clean Captive Installations in sub-Sahara Africa

Focus: Industrial clients in Nigeria

Kick-off meeting presentation

FS-UNEP Collaborating Centre

November, 2019

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Overview of project Snapshot of the various stages in the project

Initiating the project

Desk study

- through research
- in-house & consultative expertise

2

Stakeholder consultation

- scoping missions
- relationship building

✓ Awareness creation within both public and private stakeholders, whose feedback will be integrated into project design

Assistance from FS-UNEP

3

Development of tools

- identifying business models
- selecting financing mechanisms

4

Identifying relevant & key partners

Selection of replicable designs (best model); designing selection criteria

for national showcase project

✓ Design process to monitor and verify performance of chosen model and showcase viability of said model for easy access to public

Expected outcomes

6

Implementing the best chosen showcase project and replicating the model

- Understanding best practices & replicability by increasing uptakes
- Help countries meet climate and development goals according to the Paris Agreement

- Nigeria has poor national and regional grid electricity
- Nigeria suffers from poor transmission and distribution systems
- Nigeria has one of the lowest electricity consumption per capita in the world
- Captive generation used in many industries exceeds the available grid-connected capacities
- Nigerian government aims to achieve 30GW of electricity capacity by 2030 with 30% share of RE
- Mini-grid uptake in Nigeria is strong and growing

- Only 31% of total installed generation capacity (14.2 GW in 2018) is available for supply
- Due to ageing grid infrastructure, insufficient availability of gas, structural inefficiencies in transmission and distribution systems
- Frequent system collapses and forced outages
- Transmission capacity (~5GW) far below total installed generation capacity of 14.2GW
- Almost 46% of energy lost through technical, commercial and collection issues
- Peak electricity consumption per capita recorded so far 156kWh (2012)
- Global minimum average electricity consumption per capita for developing economies at 500 kWh
- Widespread self-generation of power from alternative sources, mainly off-grid diesel and gas-generators (8-14GW est. capacity)
- This represents 96% of energy consumed by Nigerian industries
- To achieve its electricity targets, the government of Nigeria published a FiT regulation in 2015. No project has been completed yet
- Mini-grids pipeline has been increasing since the launch of the mini-grid regulation in 2017 and inventions like the Nigeria Electrification Program, the Rural Electrification Fund Program
- Most projects under 100kW, but many companies position themselves in the C&I segment with an estimated 20MW installed capacity

Preliminary findings from the desk study

What have we understood so far

1

Nigeria has poor national and regional grid electricity

A. Critical energy situation - hindering its economic development

B. During the most peak periods, only 31% of installed capacity of 14.2GW available for supply

E. High usage of diesel gensets

D. Electricity demand has increased 7% annually over the past decade due to population growth and economic growth, but **little investment into generation capacity**

C. Ageing grid infrastructure, insufficient availability of gas, **structural inefficiencies** in transmission and distribution systems

Distribution

2

Nigeria suffers from poor transmission and distribution systems

Transmission

- Transmission capacity ~5GW (operational generation capacity ~4-5GW) far below total installed generation capacity of 14.2GW; average transmission losses as high as ~8.8%
- Almost 46% of energy lost through technical, commercial and collection issues
- Distribution network capacity has increased from 3,000 MW to 5,000 MW, but distribution network can not distribute >57% of available electricity; currently ~2,000 MW of stranded capacity

DisCos operating losses in 2015

10NGN/kWh

Generation

¹ Refers to average daily capacity of units non-available and non-operational from Jan to Aug 15 2015; assumes peak demand 2 Effective capacity for transmission and distribution post-losses; assumes peak demand

Preliminary findings from the desk study

What have we understood so far

Nigeria has one of the lowest (on-grid) electricity consumption per capita amongst developing economies

Evolution of power consumption per capita and generation (1995 to 2014)

Nigeria's **156kWh** in **2012 vs.** developing economies average of **500 kWh**

Residential electricity
consumption has been the most
pronounced over the last decade as
this sector consumes most electricity
from on-grid connected
electricity

Future increase in electricity demand will need to be matched
with additional investment in
generation, rehabilitation and
expansion of the existing grid

Captive generation used in many industries exceeds the available grid-connected capacities

Total on-grid energy consumption in Nigeria by different economic sectors

Final energy consumption of Industry sector

- Gas/diesel gensets c.8-14 GW capacity
- 86% companies own/share generators

96% of the electricity consumed by the industry sector is from privately owned capacity, self-generated from natural gas, diesel, biomass and waste – on-grid electricity consumed by the industry sector is only 4%

Preliminary findings from the desk study

What have we understood so far

Nigerian government aims to achieve 30GW of electricity capacity by 2030 with 30% share of RE in the mix (Electricity vision 30:30:30)

Nigeria generation capacity targets 2030

■ Off grid

■ On grid Renewables ■ On grid fossil Fuels

■ Self generation

On grid

■ Captive

■ Off grid

RE targets by capacity per technology

Technology	Target by 2020	Target by 2030
Small Hydro	265MW	1,200MW
Solar PV	2,000MW	5,000MW
Solar Thermal	50MW	1,000MW
Onshore Wind	170MW	800MW
Biomass	300MW	1,100MW
Mini-grids	180MW	5,414MW
Solar PV (home + streets)	360MW	2,786MW

- Economically, C&I solar is already cheaper than grid electricity tariffs in Nigeria
- At least 20MW of C&I solar installed in Nigeria as of November 2018, most installations <30kW

Source: NERC

6

Major barriers to having more C&I solar in Nigeria are mostly financial

Financing and investment of off-grid programs

Reform wishes by Nigerian C&I solar developers

Developers perceive the major barriers to more C&I solar in Nigeria as financial, from debt availability to credit risk, foreign exchange hedges and high import tariffs

CICSA CAPTIVE INSTALLATIONS FOR BOUSTHIAL CLIENTS IN

Stakeholder consultations

and information...

Bridge gap in data

What information do we need to streamline the process of installing captive PVs

- Nigeria has poor national regional grid electricity
- Nigeria suffers from poor transmission and distribution systems
- Nigeria has one of the lowest electricity consumption per capita in the world
- Captive generation used in many industries exceeds the available gridconnected capacities
- Nigerian government aims to achieve 30GW of electricity capacity by 2030 with 30% share of RE
- Mini-grid uptake in Nigeria is strong and growing

... through customised and tailored approach in reaching out to potential stakeholders

Streamlining the process

How does the FS-UNEP collaborating centre help?

Development of tools

- identifying business models
- selecting financing mechanisms

A. Ownership model

B. ESCO financing model

C. Equipment leasing model

Financing mechanisms

Identifying relevant & key partners

Government/Agencies

Private Sector Developers

Fin. institutions/supporters

Genset suppliers/off-grid IPP

Solar IPPs

Selection of replicable designs (best model); designing selection criteria for national showcase project

- Currently, there is a lack of monitoring and verification of installed captive PV projects
- There is also **not enough publicly available information** explaining the advantages of captive solar PV and potential risks that exist (e.g. for industrial users: payback period of installations, savings per year, etc.)
- Implementing one project to showcase it as a replicable model will improve transparency in this captive PV market. Monitoring performance of the selected model will prove it to be used as a viable design for other industrial users

Final expected outcomes and timeline Project will run from 2019 - 2023

2019

Component 1: Baseline studies and awareness raising

2019 - 2020

Component 2: Economic and financial tools and assessments

2020 - 2023

Component 3: Realisation of one showcase project per country

2019 - 2023

Component 4: Knowledge dissemination and outreach

Thank you for your patience!

For further information please visit:

www.captiverenewables-africa.org

Tobias Panofen

Email: t.panofen@fs.de

Madhumitha Madhavan

Email: m.madhavan@fs.de

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

