

Clean Captive Installations in sub-Sahara Africa Webinar | Session 2

Summary of the Ghana country study and Tools

FS-UNEP Collaborating Centre

24th March, 2021 | Total duration - 70 minutes

Supported by: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Frankfurt School FS-UNEP Collaborating Centre for Climate & Sustainable Energy Finance

Environment Programme

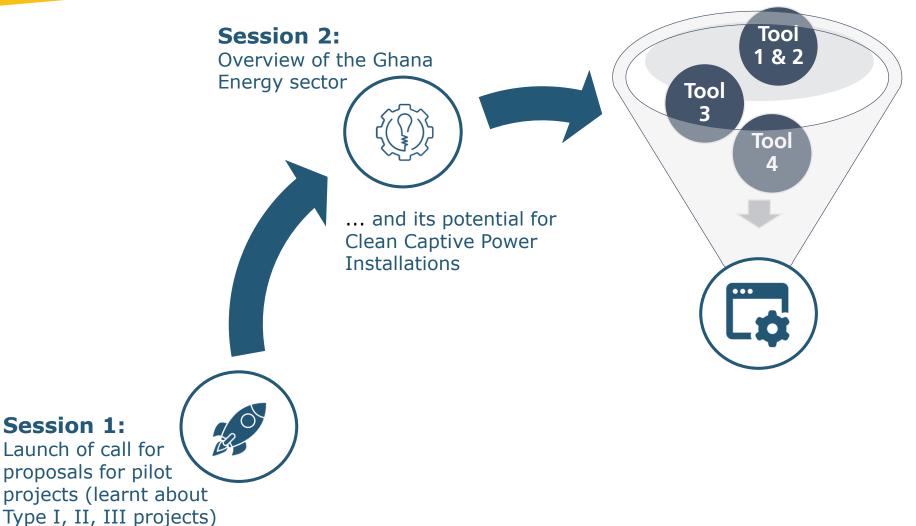
United Nations

Webinar | Agenda

Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	rating Centre)

Webinar | Agenda


Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	rating Centre)

Webinar | Introduction

Session 2

Session 2:

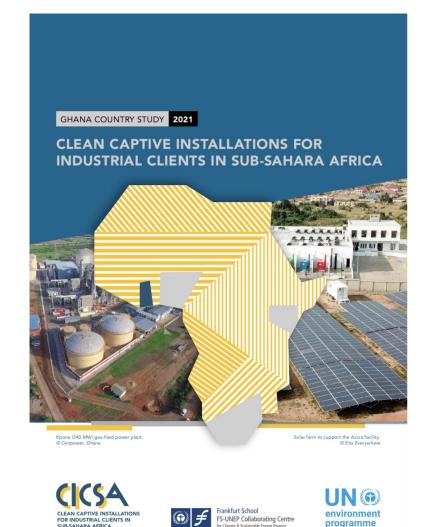
Set of tools as introductory guidelines to support in:

- Understanding various available financing options for clean captive solar PV projects, and
- Choosing the optimum solution depending on specific needs

What's next?

- Download all documents via our website: <u>www.captiverenewables-</u> <u>africa.org</u>
- Submit your proposal applications (*deadline* 14th April)
- Communicate with us!

Webinar | Agenda

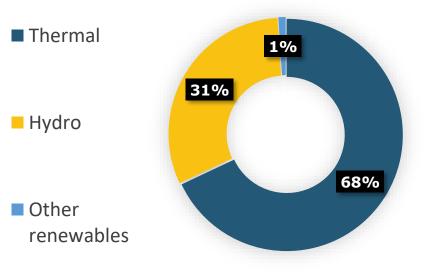

Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	rating Centre)

Introduction

The Ghana Country report presents the state of the clean captive installations market in Ghana, with a focus on the commercial and industrial market and solar photovoltaic (PV) technology.

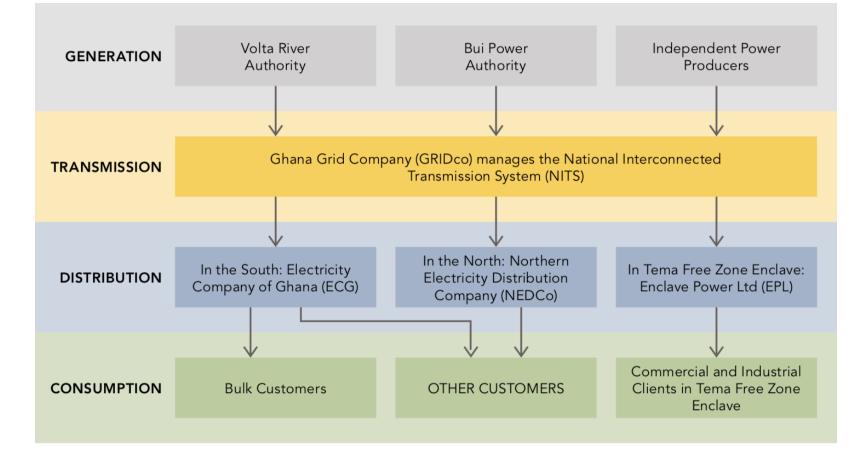
Download from website: <u>captiverenewables-africa.org/publications/</u>



Energy profile

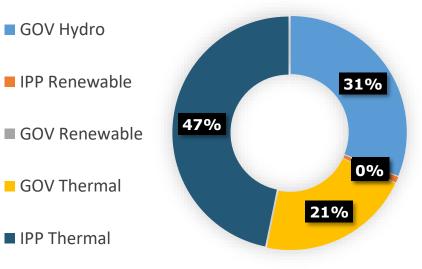
Ghana generates electricity mostly from thermal sources and hydro sources.

Energy indicator	Result
Access to electricity	82.40%
Electrification – urban areas	94.19%
Electrification – rural areas	67.35%
Average cost of generation	US\$ 0.154 per kWh
Total electricity generation	16 213.4 GWh
Total electricity consumption	14 330 GWh
Sectoral electricity consumption	10 973 GWh
Electricity total installed capacity	5 048 MW
Peak electricity demand	2 525 MW


Generation mix by sources

Electricity market structure

The public sector plays a dominant role in the electricity market in Ghana. In 2005, the government of Ghana unbundled the electricity sector as part of the power sector reforms.

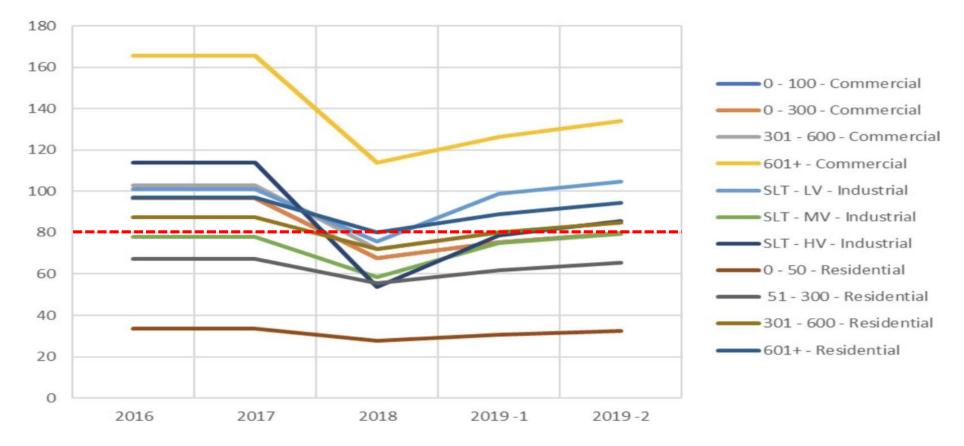


Electricity generation

Ghana's generation mix has been undergoing a transformation over the years. The current electricity generation in Ghana relies increasingly on fossil fuels.

Energy indicator	Result
Total installed generation capacity	5 048 MW
Generation by GOV-owned companies	52.4%
Generation by IPP from private sector	47.6%
Electricity from thermal sources	68%
Electricity from renewable energy sources	0.84%
Electricity from hydro	31.15%

Generation mix by sectors



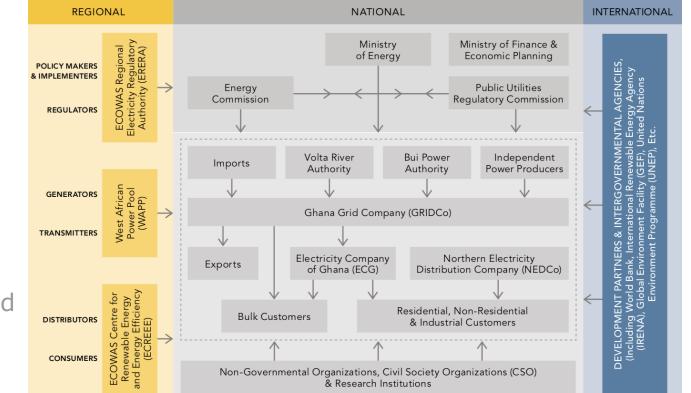
Despite the total installed generating capacity being higher than peak demand, Ghana experiences shortages of electricity supply.

Electricity sales

Tariffs across the different customer categories from 2015 to 2019 in Ghanaian pence

Energy policy and regulatory framework

Legal Framework for Clean Captive


Renewable Energy Act, 2011

- Feed-in tariff scheme
- Renewable purchase obligation
- Net metering
- Off-grid electrification

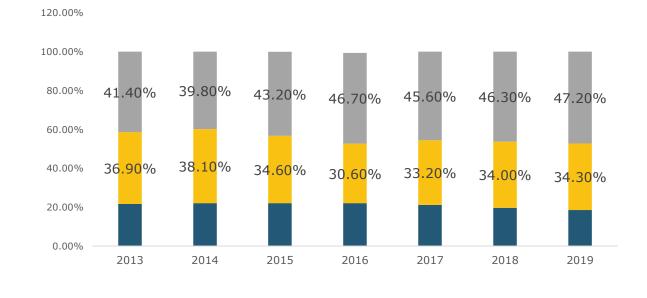
Renewable Energy Master Plan

Licensing for Clean Captive

- Rooftop / Small-scale renewable mini-grid electricity sales
- Wholesale electricity supply
- Manufacturing and assembly
- Importation, installation and maintenance of renewable energy technologies
- Lease-to-own license

Uncertainties remain around the issuance of the different kinds of licenses to implement the clean captive solution.

Overview of existing renewable energy captive installations

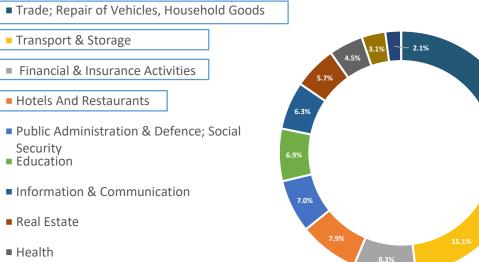

Commercial and industrial solar installed capacity (MW) in Ghana, 2013-2018

Ghana market potential for captive power

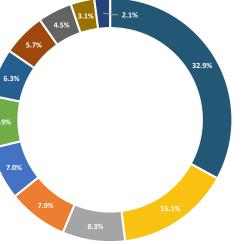
Share of GDP by sector (per cent), 2013-2019

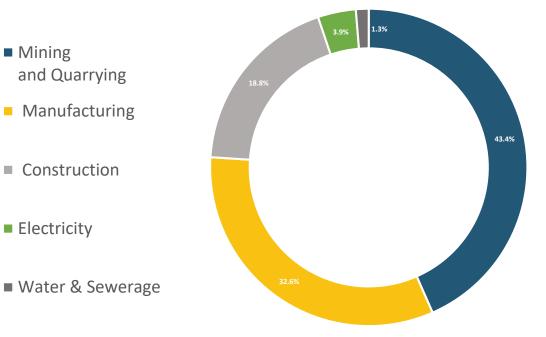
Agriculture Industry

Service


Ghana market potential for captive power

Service sector by value-added activities


Industry sector by activities


Mining

Electricity

- Professional, Administrative & other Services Activities
- Other Personal Service Activities

Financing clean captive power – Commercial Banks

- Annual interest rates of between 23 per cent and 27 per cent (in Ghanaian Cedis)
- Short tenors of between two and five years

Examples of concessional lines of credit to support lending to the sector:

Bank name	Туре	Partner institution	Facility amount	Denomination / Expected interest rate / Tenor	Status
	Renewable energy	Agence Française de Développement (AFD)	\$20 million	U.S. dollars / 10% Minimum 5 years	Approved July 2019
CalBank	Renewable energy	International Finance Corporation	\$12.5 million	U.S. dollars / 10% Ghanaian cedis / 22-25% Minimum 5 years	Approved May 2018
Ecobank	Renewable energy	Green Climate Fund – Accredited Entity	Not disclosed	U.S. dollars / unknown For projects approved for Green Climate Fund funding 3% Tenors unknown	NA
Fidelity*	Blended, water sanitation and health care	SNV (Netherlands Development Organisation)	Not disclosed	Ghanaian cedis / 10% for water and sanitation projects 22% for healthcare projects 36 months tenor	Approved
Stanbic	Renewable energy	AFD	€10 million	Ghanaian cedis / 13-19% 15 years	Approval in final stages

Financing clean captive power – Private financiers

Selected captive PV financing firms / energy service companies active in Ghana

Berkeley Energy focused on only 300 kWp solar PV grid-connected and hybrid solutions in Ghana, it acquired Azimuth Power's operations and business in Ghana in 2019.

Crossboundary Energy has installed a 400 kWp solar PV system on the rooftop of Kasapreko Company Limited in Accra and is constructing a 999 kW rooftop solar PV system for a multinational in Tema.

REIDAVIA

SOLAR POWER

Dutch & Co- Has undertaken a number of projects across banks, retail, mining and hospitality. It has an installed capacity of 1,400 kWp, completing about nine projects in a number of sectors with project sizes from 16.5 kWp to 565 kWp.

REDAVIA Solar Power - As of 2019, it had installed more than 10 systems in Ghana, ranging from 40 kWp to 800 kWp for manufacturing companies, universities, etc., for a total installed capacity of 3-4 MW.

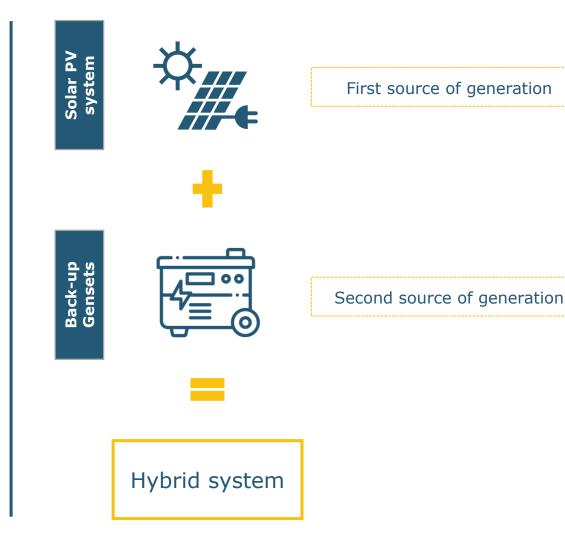
Translight - focused only on the supply of back-up systems during Ghana's energy crisis period (2013-2015). From 2016, the company added development of solar PV modules for both off-grid and grid-connected solutions for its clients. The largest project installed to date had 300 kWp capacity.

DSE Group -specializes in energy efficiency through LED (light-emitting diode) lighting and solar PV installations, ranging from small residential to large-scale industrial systems. In Ghana, the group has installed a 350 kWp solar plant for a meat company, a 106 kWp solar facility for a pharmacy and 565 kWp on a cocoa factory.

Conclusion

- Electricity supply reliability is rather low due to high levels of transmission and distribution losses in Ghana. → captive power is seen as an alternative private sector solution to address the challenges of the unreliability of power supply.
- Ghana had the highest electricity tariffs for commercial and industrial facilities in Sub-Saharan Africa. → the expected levelized cost of electricity for captive solar generation seems to be very cost competitive and attractive for commercial and industrial consumers.
- The sub-sectors in the service and industry sectors in Ghana have been identified as strong potential sectors for clean captive power. → Any cost reduction through lower electricity bills would help reduce expenses and improve competitiveness.
- The uncertainty surrounding the country's energy regulatory framework and financing of clean captive installations in Ghana are main obstacles in the uptake of clean captive installations. -> better transparency in the regulatory environment and the presence of an active financing ecosystem will be conducive.

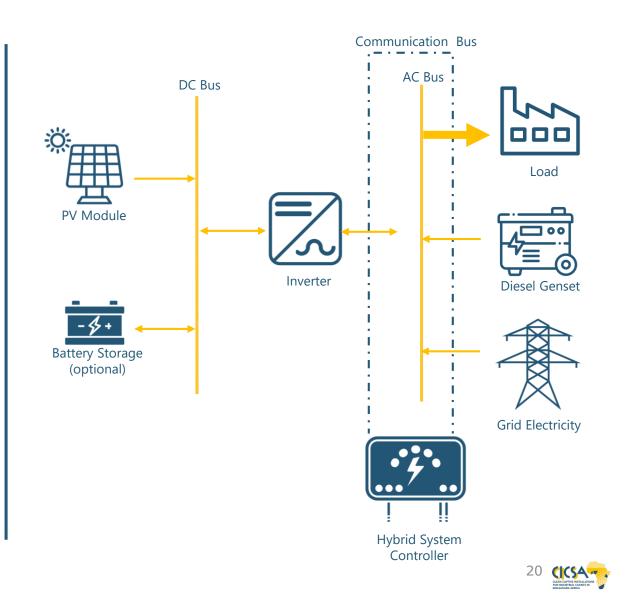
Webinar | Agenda


Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	rating Centre)

The Hybrid system

- Hybrid systems consists of more than one source for energy generation
- Most common is solar PV/diesel hybrid system
- Combines generation from solar PV and Gensets
- Can be either **on-grid** or **off-grid** systems

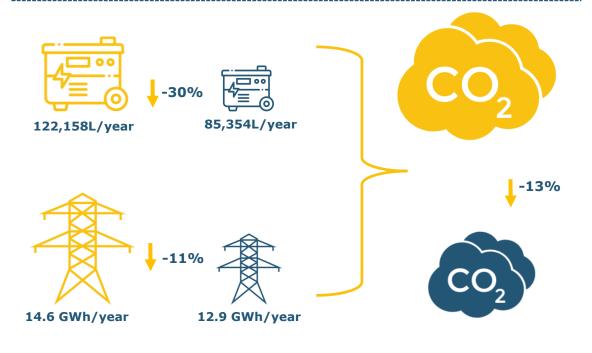


The Hybrid system

Hybrid system main components:

- Solar PV panels
- Inverters
- Gensets
- Hybrid system controller
- Battery storage (optional)

The Hybrid system


There are many **benefits to hybrid**

systems such as:

- Fuel savings
- Grid purchases savings
- Reliability of power supply
- Reduction in CO2 emissions
- Battery storage

Example:

- Factory based in Nairobi Kenya
- Operates on 24/7 basis
- Has five installed Gensets and utilizes three of them

The Hybrid system

NOTE: Ensure that product warranties are provided by the respective supplier

Solar PV panel

- Efficiency $\geq 18\%$
 - Degradation rate $\leq 0.7\%$
 - Temperature coefficient range: -0.3% to -0.5%
 - Power Tolerance: 0/+3%
 - Life cycle: 20 -25 years

Inverter

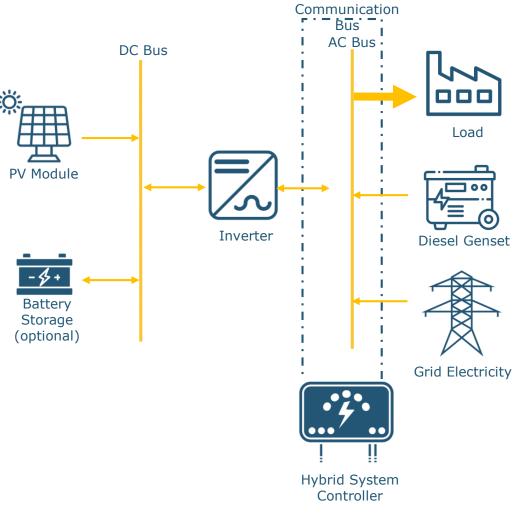
- Efficiency \geq 95%
- The DC to AC conversion losses: 2-5%
- Life cycle: 8 to 10 years

Battery Storage

- Efficiency $\geq 85\%$
- Depth of discharge (DOD) $\geq 80\%$
- Most used type: lead-acid
- Life cycle: 8 to 10 years

Hybrid system controller

- Energy management system
- Ensure compatibility with Gensets and


inverters

The Hybrid system

Ensuring a proper design

- Proper sizing of the system
- For on-grid systems, the system should be in accordance to the local grid requirements
- Performance ratio $\geq 80\%$
- Ensuring minimum load factor of Gensets is met
- Minimizing shading losses $\leq 1\%$ to 4%
- Roof installations should comply with the local legislation
- Maintenance and cleaning plan to reduce soiling losses

Webinar | Agenda

Session 2

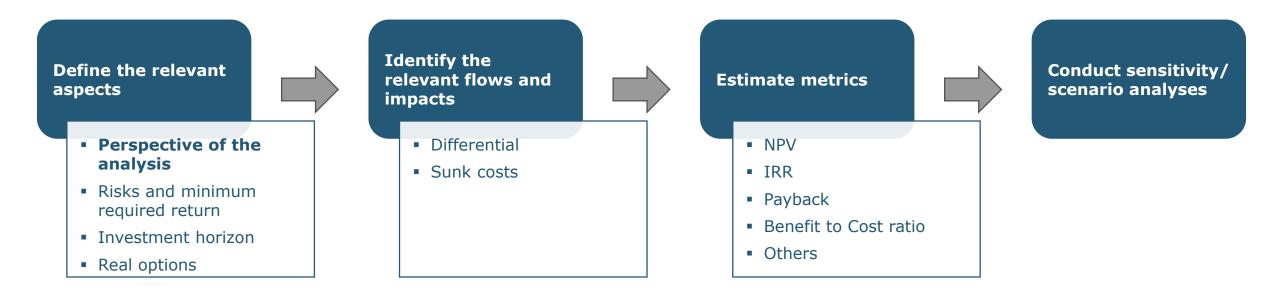
START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	rating Centre)

Introduction

Content of the Tool

Introductory guidelines on metrics and considerations for analyzing the attractiveness of individual renewable energy projects such as solar PV captive systems

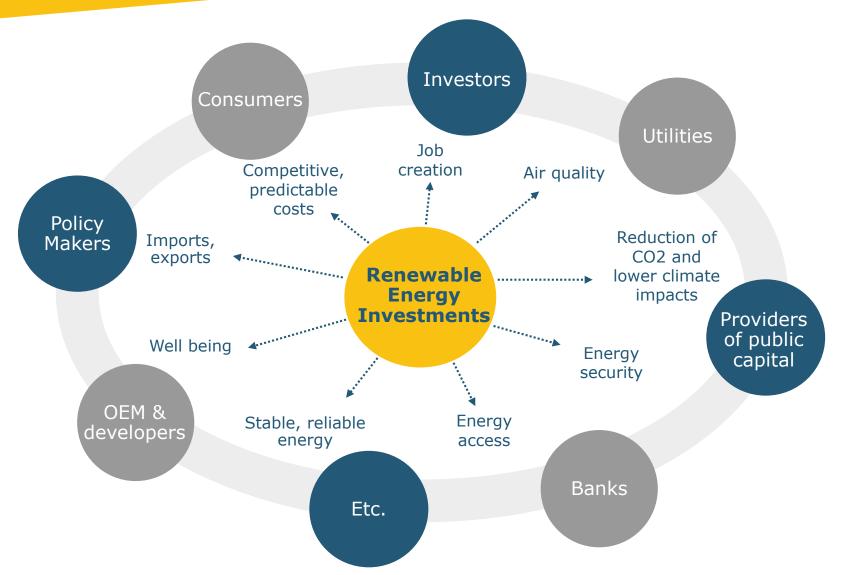
Perspective of the analysis: public or private


Target Audience

Stakeholders such as investors, policy makers and analysts by providing them with analytical considerations that are commonly required for a complete assessment of RE investments

TOOL 2 METRICS FOR ASSESSING FINANCIAL VIABILITY OF RENEWABLE ENERGY PROJECTS / COST BENEFIT ANALYSIS OF RENEWABLE ENERGY PROGRAMMES
EXCEPTION CONTRACTOR TABLE CARTER CONTRACTOR THE BOOKS CHECK

Steps to evaluate projects



Analysis from various perspectives

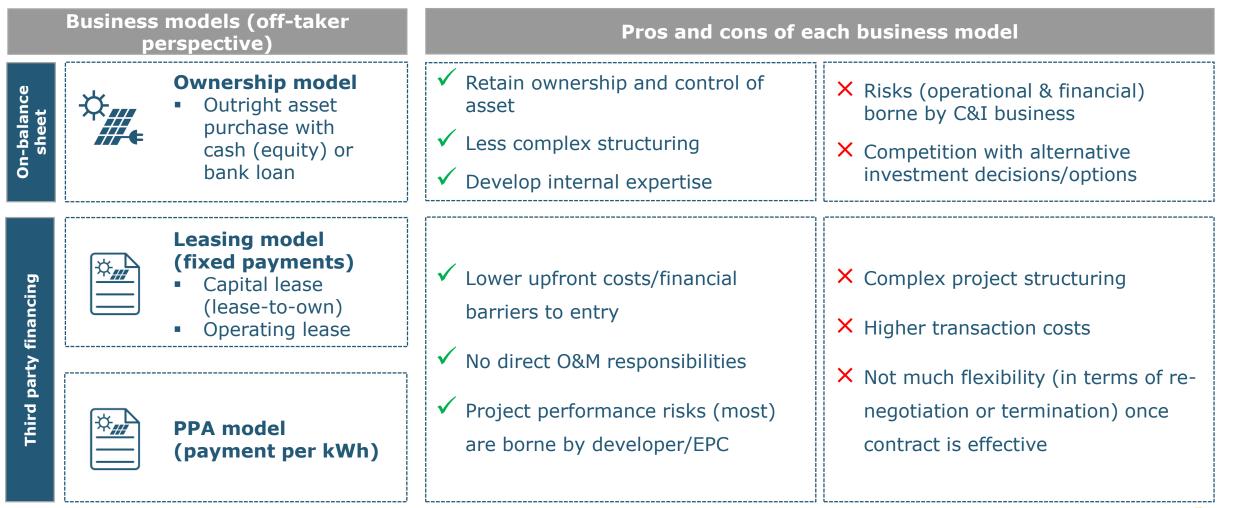
	Public Sector	Private Sector
Beneficiaries	Society	Investor(s) (equity, debt, project)
Timeframe	Technological lifetime	Investment horizon
Costs and benefits	All economic, social and environmental impacts are considered, including external and indirect impacts	Only relevant costs and benefits that directly impact cash flows are considered
Discount rate used	Social discount rate (lower than private investors' required return)	Minimum required rate of return of the investor
Relevant Metrics	Benefit to Cost Ratio NPV LCOE	IRR NPV Payback period LCOE

Public perspective

RE systems benefits

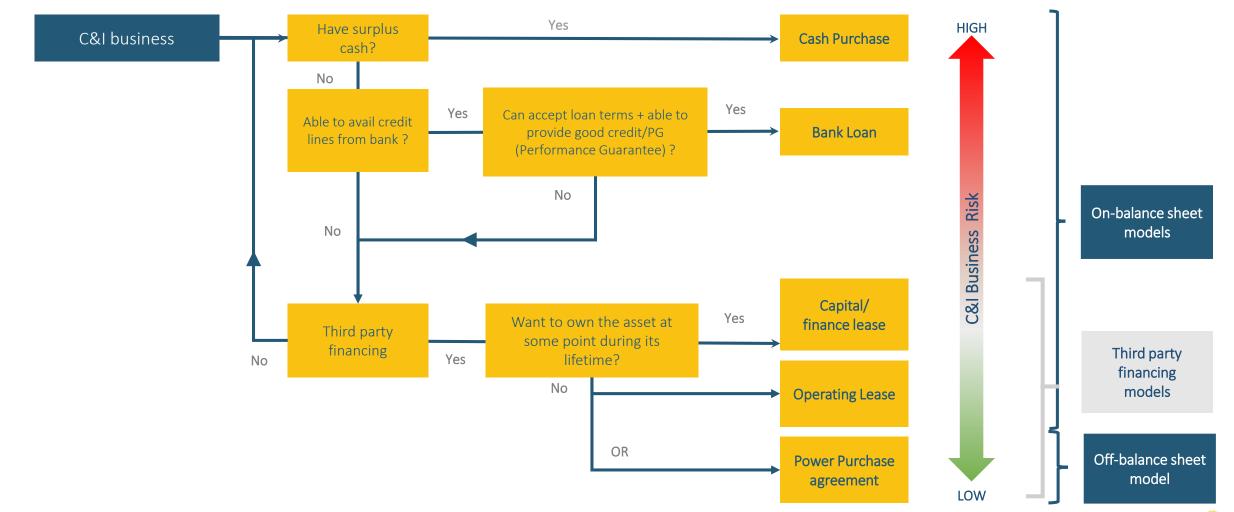
	Associated benefits of PV (non-exhaustive)	
Ghana	 Increased energy self-sufficiency of consumers (reduced production costs and losses) CO₂ emissions reduction Contribution to the country CC objectives 	
Kenya	 Reduction of technical energy losses in the grid Demand curve flattening Reduction of infrastructure investments CO₂ emissions reduction Cost savings 	
Nigeria	 Increased energy self-sufficiency of consumers (reduced diesel costs and production losses) Positive health impacts and increased well-being More stable network infrastructure 	
South Africa	 CO₂ emissions reduction Less pressure on the current power infrastructure 	

Webinar | Agenda


Session 2

START	ΤΟΡΙϹ	PRESENTER
5 minutes	WELCOME Introduction to Webinar Session 2	DIANA KOLLANYI (FS-UNEP Collaborating Centre)
15 minutes	GHANA COUNTRY STUDY REPORT Overview of Ghana Energy sector and its potential for Clean Captive Power Installations	CAROLINA MERIGHI (UNEP)
50 minutes	INTRODUCTION TO THE CCI TOOLS	
10 minutes	Tool 4 Best Available Technology (BAT) for solar PV captive systems	SARAH MOUSTAFA (FS-UNEP Collaborating Centre)
15 minutes	Tool 2 Metrics for assessing financial viability of renewable energy Projects/Cost Benefit Analysis of renewable energy programmes	MARIA BAEZ (FS-UNEP Collaborating Centre)
25 minutes	 Tool 1 Financing guidelines and business models for solar PV Captive Systems Tool 3 User Manual for the preliminary financial model to assess the viability of solar PV captive systems for businesses 	MADHUMITHA MADHAVAN (FS-UNEP Collaborating Centre)
	Session will be moderated by DIANA KOLLANYI (FS-UNEP Collabo	prating Centre)

Tool 1 | Financing guidelines & business models for solar PV captive systems


Understanding business models

Tool 1 | Financing guidelines & business models for solar PV captive systems

Choosing the right business model

Tool 3 | Preliminary financial model for viability assessment

Creating the input sheet

Objective of modelling: Conduct financial assessment of the PV project and illustrate the financial viability

Usage patterns

Financing costs

parameters

Other

System costs

 Cost of the system including breakdown (panels, inverters, controllers, mounting structure, cabling, installation, etc.)

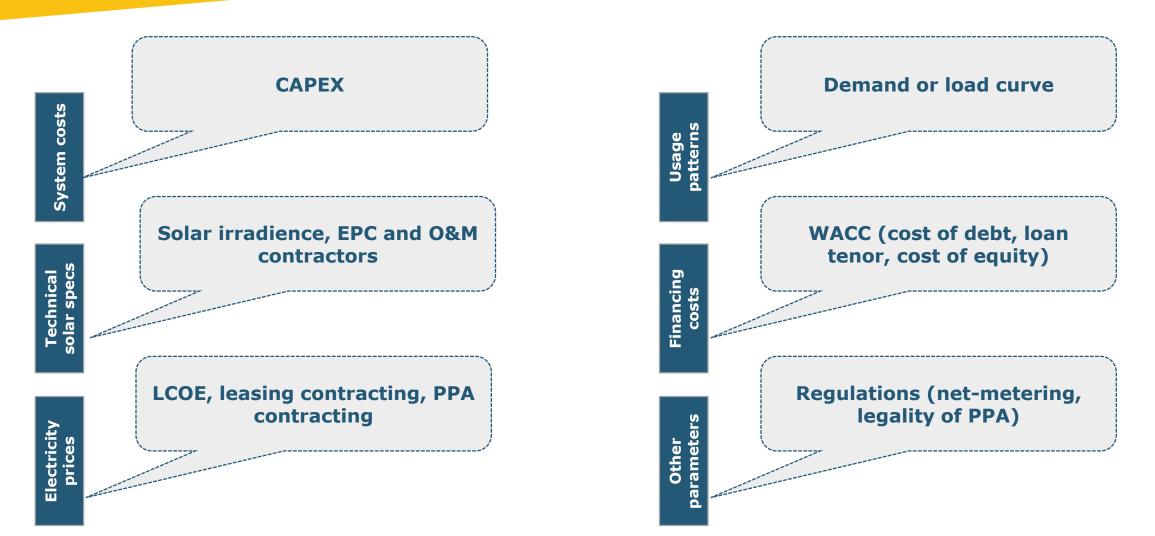
- % of solar consumption
- % of consumption used for net metering
- % of solar generation from Gensets
- % of solar generation lost

Technical solar specs

ectricity prices

- System size identification
- Generation utilization and total generation potential
- Grid tariff rates
- Back-up generation costs
- Net-metering benefits
- Future price increase

Total financing rate (WACC)


- Tenor of the loan
- Down payment amount

- Corporate tax
- O&M

Tool 3 | Preliminary financial model for viability assessment

Drivers of profitability

Tool 3 | Preliminary financial model for viability assessment

Model overview

Input Sheet

1. Assumption for grid electricity

Electricity prices

2. Assumption for solar system

- System assumption
- System usage

3. CAPEX and OPEX assumption

- System costs per KWp
- Replacement CAPEX
- Depreciation

4. Financing assumption

- Cost of equity and debt
- Loan tenor
- Corporate tax

5. Other assumptions

CO2 savings

6. Solar Production profile

Output Sheet

IRR (Project and Equity)

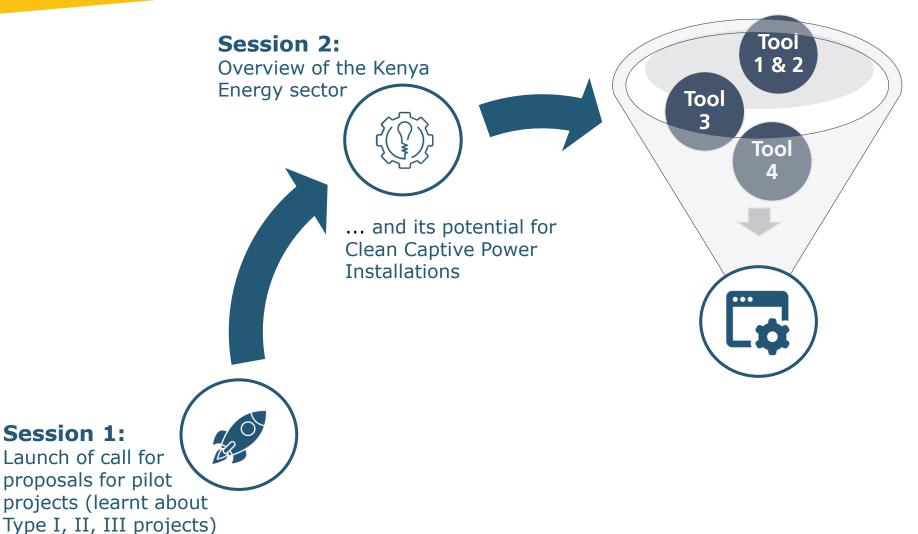
NPV of cash flows (Project and

Equity)

- LCOE
- DSCR
- Simple payback period
- CO₂ emission savings

The sensitivity sheet provides impact on an output by varying

model inputs


Sensitivity sheet

- In doing so, the user will be able to simulate some uncertainties in the input values of the model, hence helping to make informed decisions
- This helps assess risks of a certain project

Webinar | Summary of key takeaways

Session 2

Session 2:

Set of tools as introductory guidelines to support in:

- Understanding various available financing options for clean captive solar PV projects, and
- Choosing the optimum solution depending on specific needs

What's next?

- Download all documents
 via our website:
 <u>www.captiverenewables-</u> <u>africa.org</u>
- Submit your proposal applications (*deadline* 14th April 2021)
- Communicate with us!

Thank you for your patience!

UN Environment (UNEP)

Mvriem Touhami

Meseret Zemedkun

Rakesh Shejwal

Carolina Merighi

For further information please visit:

www.captiverenewables-africa.org

Please contact us if any queries:

info@captiverenewables-africa.org

Tobias Panofen

Maria Baez

Diana Kollanyi

FS-UNEP Collaborating Centre

Madhumitha Madhavan

Sarah Moustafa

based on a decision of the German Bundestag

Frankfurt School FS-UNEP Collaborating Centre for Climate & Sustainable Energy Finance

Environment Programme

United Nations